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Abstract— In robotic applications such as bin-picking or
block-stacking, learned predictive models have been developed
for manipulation of objects with varying but known dynamic
properties (e.g., mass distributions and friction coefficients).
When a robot encounters a new object, these properties
are often difficult to observe and must be inferred through
interaction, which can be expensive in both inference time and
number of interactions. Our goal is to develop a predictive
model that can efficiently adapt to new objects by estimating
their unobserved properties through interaction. We propose an
encoder/decoder action-feasibility model to efficiently predict
grasp stability based on a variable, and limited, amount of
interaction data. The encoder predicts a distribution over
the unobserved parameters while the decoder predicts action
feasibility which can be used in an uncertainty-aware planner.
An explicit representation of uncertainty in the encoder en-
ables information-gathering heuristics to minimize adaptation
interactions. We also show that the amortized distribution is
computationally efficient and performs comparably to particle-
based distributions in a grasping domain. Finally, we deploy
our method on a Panda robot to grasp heavy objects.

I. INTRODUCTION

In automated manipulation, tasks such as bin-picking or
block-stacking are often repeated for a large set of objects
that have a wide distribution of geometric and dynamic
parameters (e.g., their masses, centers of mass, and friction
coefficients). Our goal is for robots to efficiently interact with
new objects to discover their unobserved dynamic parameters
required for reliable prediction and planning.

Previous work has shown that robots are able to learn
manipulation dynamics (e.g., stacking or throwing) entirely
from online data when the dynamic properties of the objects
are known [1] or have minimal impact on action outcome.
It is unreasonable, however, to expect that a robot should
know or be able to observe the dynamic properties when
encountering a novel object. Robots without tactile or force
feedback, for example, will not be able to directly observe
inertial and frictional properties of objects. A robot may not
even be able to know what or which dynamic properties will
play a role in the manipulation dynamics.

A standard approach to handling unknown parameters is
to use a Bayes filter [2] to maintain a probability distribution
or belief over the unobserved properties. Every time a new
action is executed, the resulting observation (e.g., grasp
success or failure) is used to update the belief using an
observation model that relates the unknown parameters to
observations. When the observation is a simple function of
the belief, such as a linear function with Gaussian noise, the
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Fig. 1: Our method allows a Panda (right) to infer unobserved prop-
erties of objects based on interaction history. This allows the robot
to efficiently grasp objects with non-uniform mass distributions such
as weighted blocks (left) or ShapeNet objects (center).

belief update can be efficient. However, when the observation
model is a complicated function, more expressive belief
representations, such as sets of particles, are required.

Particle-based approaches suffer from the curse of dimen-
sionality: the number of particles needed to represent the
belief scales exponentially with the number of unobserved
variables. For tasks such as grasping there are five unknowns:
mass, static friction, and three for center of mass. Sampling
and updating the belief can therefore be expensive.

When manipulating new objects with unknown properties,
a robot will need to perform many belief updates as it
interacts and collects observations. Further, while planning,
it is common to simulate belief updates in order to choose
informative actions. As such, the cost of the belief update is
critical. Using particle-based representations can quickly be-
come intractable and limit the amount of interaction possible
within a fixed time budget.

To find a predictive dynamics model with an efficient
belief representation and update procedure, we propose to
jointly learn (1) inference networks that are trained to predict
posterior distributions over the unobserved parameters given
a history of interactions and their outcomes and (2) an
action feasibility classifier that can be used for planning. The
model uses an encoder/decoder architecture based on Neural
Processes [3] for unsupervised learning of an object-level
latent space shared between the inference network (encoder)
and feasibility classifier (decoder). For our grasping task, the
input to the inference network is a set of labeled grasps for
a specific object. The posterior over the latent parameters is
computed as a single forward pass through the inference net-
work/encoder, which only scales linearly with the number of
observed grasps irrespective of the number of unobservable
parameters. The feasibility classifier/decoder can in turn be
used for planning by consuming samples from the posterior
and predicting the success probability for candidate grasps.
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We show that our model, called a Grasping Neural Process,
can classify stable grasps comparably to particle filters at a
fraction of the computational cost. Our inference network
predicts a distribution over the learned-latent representation
of the unobserved parameters, which we use to compute
information-gathering heuristics for a robot to adapt with
fewer grasps. In simulation, we verify the GNP can be used
to find stable grasps for novel objects after observing a small
set of interactions and can identify grasps that minimize
the grasping force when deployed in an uncertainty-based
planner. We also demonstrate the GNP, trained in simulation,
can be deployed to successfully adapt and grasp a weighted
block on a physical robot (see Figure 1).

II. PROBLEM FORMULATION

Given a previously unseen object with unknown dynamic
properties, our goal is for a robot to reliably manipulate it
(e.g., grasp or place) using a small number of adaptation
interactions. In order to do so, we take a model-based
approach where we aim to predict action feasibility in a way
that allows the model to rapidly adapt to novel objects.

Formally, we consider a robot operating in a domain
with K objects in a discrete-time setting, where each ob-
ject’s state can be divided into observed and unobserved
properties. The observed state Xt = {x(k)

t |k = 1, . . . ,K}
can be time-varying, whereas the unobserved state Z =
{z(k)|k = 1, . . .K} is assumed to be static. Many time-
varying properties (e.g., pose or velocity), can be extracted
from a perception system while static properties often cannot
be directly observed (e.g., friction coefficients, mass, or
coefficients of restitution).

Our objective is to learn a model that predicts the feasibil-
ity of an action for a specific object1 yt ∈ {0, 1} (e.g., grasp
stability). This predictive model can then be integrated with a
task and motion planning system for long-horizon manipula-
tion tasks. Concretely, the goal is to estimate p(yt|xt, z, at),
where at ∈ A is the action space of the robot.

We assume the robot’s operation is divided into three
distinct phases: training, adaptation, and testing. In the
training phase, the set of objects is fixed, and the robot
has some finite amount of time to act in the environment
without any task descriptions. In this work, we assume we
already have a dataset of completed interactions provided to
us for the training phase. In the adaptation phase, the robot is
given a new object and a short amount of time to experiment
and adapt by selecting information-gathering interactions.
Finally, there is a testing phase, in which a robot is given a
task to be performed, and interacts with the objects in order
to complete the task. No further adaptation or learning is
performed in the testing phase.

III. METHODS

We primarily focus on the adaptation phase. How can a
robot efficiently, in both computational and sample efficiency,
adapt to objects with unknown dynamic properties?

1We will leave out the superscript k when referring to a single object.

Fig. 2: After executing t actions and observing their outcomes, Dt,
the robot can predict a posterior over the unobserved properties,
qϕ(z|Dt). We aim to predict feasibility y′ of unlabeled actions, a′,
given an object’s observed properties, x′, and current belief, z.

We take a probabilistic approach where we per-
form posterior estimation of the unknown properties,
z, given a variable amount of observed data, Dt =
{(x1, a1, y1), . . . , (xt, at, yt)}. Rather than estimate the pos-
terior distribution through an expensive online computa-
tion, we propose to amortize the inference procedure by
first training an inference network, qϕ, to directly predict
the parameters of the posterior distribution (Section III-A).
This model is learned jointly with the feasibility model,
pθ(y|x, z, a). The resulting posterior distribution, qϕ(z|Dt)
(which we will refer to as amortized distributions), can be
used directly for informative action planning (Section III-B)
or in conjunction with the feasibility model for uncertainty
aware planning (Section III-C). See Figure 3 for an overview.

A. Amortized Posterior Updates
When interacting with a novel object, the robot must

update its posterior after each interaction, which can be a
time-intensive operation. To address this issue, we propose
to use amortized inference for constant-cost posterior distri-
butions. Instead of performing an expensive online posterior
update, we will train a neural network to predict the posterior
distribution given the online samples, Dt, observed so far.
The inference network, qϕ(z|Dt), will need to approximate
posterior distributions p(z|Dt) for all possible timesteps, t,
and observation realizations. We take qϕ(z|Dt) to be a multi-
dimensional Gaussian distribution. The inference network
will predict the mean and diagonal covariance.

At any timestep, t, during the adaptation phase, the graph-
ical model in Figure 2 represents the data generation process.
Note that this graphical model represents a single timestep
of the adaptation phase where we have already observed the
labels for t actions, Dt, but have not yet observed the label,
y′, for a new action, a′, with observed state, x′. In order
to learn both a feasibility model, pθ(y′|z, x′, a′) that can be
used for planning and an inference network, qϕ(z|Dt), we
take an amortized variational inference approach.

For a single object, we seek to optimize:

Ez [log pθ(y
′|x′, a′, z)]−DKL (qϕ(z|DT )||qϕ(z|Dt)) , (1)

where DT = Dt∪{(y′, a′, x′)}. Note that we do not require
labels for the unobserved properties as the latent space is
learned (and need not be human-interpretable).

The proposed method is an instantiation of Neural Pro-
cesses [3] for robotic manipulation. The objective is the
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Fig. 3: Grasp Neural Processes use an offline training phase (left) to jointly learn an action feasibility model, pθ , and an inference
network, qϕ, that predicts a posterior distribution over unobserved properties. During the adaptation phase (center), the learned inference
network can be used for efficient online posterior updates and action selection. Finally, in the testing phase (right), the robot can use the
current belief, z, along with the feasibility model to perform manipulation tasks.

evidence lower bound (ELBO) for amortized variational
inference over functions (i.e., each sample of the latent space
represents a different action-feasibility classifier). The first
term of this objective incentivizes the model to make accurate
and object-consistant predictions, using the latent space when
necessary. The second term is the KL-divergence between the
full posterior and the partial posterior. During the adaptation
phase, it is the partial posterior, qϕ(z|Dt), that will be used
and the KL-divergence is used to make this posterior as
accurate as possible given the reduced input set Dt.

During training, Eq. 1 is optimized using stochastic gradi-
ent descent. Mini-batches are sampled where each element of
a batch corresponds to D

(k)
T for many objects, k. Each D

(k)
T

is further divided into partial datasets D
(k)
t by uniformly

sampling t between 0 and T (a standard normal distribution
N (0, 1) is used when t = 0). This ensures the encoder can
represent posterior distributions for variable input sizes.

B. Informative Action Selection

We have shown so far how to perform efficient posterior
updates at a single timestep: evaluate qϕ(z|Dt). However,
we are also interested in minimizing the total number of
time-consuming interactions used to collect observations.
While selecting random actions may be computationally
cheap, many interactions are likely required before reaching
a sufficient performance level.

Instead, it is common to take an information-theoretic
approach. Actions are selected which maximize the infor-
mation gain at a single timestep (a greedy, but often good,
approximation to optimizing over sequences of actions [4]):

max
at+1

H(qϕ(z|Dt))− Eyt+1
[H(qϕ(z|Dt, xt+1, at+1, yt+1))]

(2)
One way to solve this maximization is via a simple pool-
based approach: first generate a collection of M unlabeled
samples, then score each according to this objective. How-
ever, computing expected information gain requires two
posterior updates, which can be expensive with particle-
based methods: O(MN) if N is the number of particles.

Using the inference network within the information gain
computation has a much more favorable complexity, scaling
linearly with the number of unlabeled samples: O(M). Given
a similar computational budget to baselines, more unlabeled

samples can be considered, leading to more informative
actions and therefore fewer expensive interactions.

C. Uncertainty Aware Planning

After seeing a limited number of adaptation actions, cap-
tured by Dt, there will always be some level of remaining
uncertainty about the unknown properties. This uncertainty,
or model confidence, can be incorporated into task planning
to ensure robust behaviour.

We consider two task formulations. The first is to simply
find an action that is feasible. We use the learned networks,
qϕ and pθ, to find the most feasible action:

a∗ = argmaxa∈A p(y|x, a) (3)

We also consider bandit-style tasks specified by a reward
function, R(a), where we must trade off maximizing the
reward with current uncertainty:

a∗ = argmaxa∈A Ey∼p(y|x,a)[R(a)] (4)

The predictive posterior used in both task formulations,
p(y|x, a), is computed using the learned distributions:

p(y|x, a) =
∫

pθ(y|x, z, a)qϕ(z|Dt)dz (5)

This is approximated using Monte-Carlo sampling to account
for uncertainty arising from limited data.

IV. GRASPING TASK

We focus on grasping objects with unknown physical pa-
rameters. Grasping is important for many manipulation tasks
and success depends on understanding mass and friction
properties. For example, to grasp a hammer with a heavy
head, the robot must grasp it as close to its center of mass
as possible to avoid slip. Concretely, we aim to predict grasp
stability (i.e., force closure) of candidate grasps given an
object’s observable properties, xt, which consist of object
geometry and grasp pose. The amortized posterior will need
to infer center of mass (CoM), friction, and mass from a
sequence of interactions to form an accurate prediction. We
refer to our model as a Grasp Neural Process (GNP).
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A. Dataset Generation

All experiments are run on two synthetic datasets: box
primitives (Boxes), and a post-processed set of objects de-
rived from 191 ShapeNet classes (see Figure 1, center) [5].2

For the training phase, we use 1000 unique object geometries
with 5 dynamic property samples each. This leads to datasets
with 5000 objects and 50 labeled grasps per object.

Object Generation: The CoM is uniformly sampled
within the convex hull of the object and lateral friction/mass
is chosen from a uniform distribution over [0.1, 0.3].

Grasp Generation: We assume access to object meshes
and a floating Panda gripper to check grasp stability. The
mesh is first used to sample grasp points that are within a
specified antipodal tolerance (30 degrees). We then sample a
random gripper orientation around the line connecting the
grasp points and ensure there are no collisions with the
gripper. Finally a grasp force is uniformly sampled in the
range (5, 20)N . The stability label is generated by closing
the gripper in simulation and applying perturbation forces in
random directions (a force closure approximation).

B. Network Architectures

Grasp Neural Processes (GNPs) use an encoder/decoder
architecture (representing the inference net and learned feasi-
bility model respectively) with domain-specific structure for
grasping data. The encoder accepts an arbitrary number of
grasps representing the history of grasps tried so far.

Input Features: Each object is represented by a global
point cloud of 256 points sampled uniformly from the surface
of the mesh. Each grasp is further represented by a local
point cloud. The local point cloud is in the reference frame
of the gripper and only includes points within 3cm of either
grasp point. The global point cloud allows the network to
reason about object-level properties like volume and moments
of inertia while the local point cloud allows reasoning about
local features like curvature and surface normals. Each grasp
is further represented by the grasp points as well as the
grasping force. The encoder will have access to the grasp’s
label while the decoder will not.

Auxiliary Networks: We use PointNets [7] to encode both
local and global point clouds. A separate PointNet instance
is used for each point cloud type and maps the set of points
into a single fixed-length embedding.

Encoder: The GNP encoder takes as input a collection
of grasps. It outputs the parameters of a d-dimensional
diagonal Gaussian distribution, µz, σz ∈ Rd. We repurpose
the PointNet architecture to operate over a set of grasps.

Decoder: Finally, the NP decoder takes as input a set of
unlabeled grasps, and a latent sample, z ∼ N (µz, σ

2
z), to

predict grasp stability using an MLP.

V. EXPERIMENTS

In our experiments, we evaluate whether GNPs yield well-
performing grasp-detectors with faithful uncertainty rep-
resentations of the unknown dynamic parameters in the

2The ShapeNet objects were post-processed to be watertight for simula-
tion and rescaled so they could fit in the robot gripper as in [6].

Fig. 4: GNP vs. PF The proposed method achieves comparable
adaptation performance to an expensive particle filter baseline with
many particles. Lines show the median Average Precision of the
grasp classifier across 500 novel objects. Shaded regions are the
top and bottom quartiles.

Fig. 5: Particle Filter Analysis (Boxes) The particle filter per-
formance is dependent on the number of particles (left) yet the
inference time scales poorly with the number of particles (right),
compared to the proposed amortized inference method. Timing
results represent the mean/std across 2500 inference runs.

ShapeNet and Boxes datasets. We first compare the proposed
method to an accurate (but expensive) particle-based base-
line, achieving comparable performance at a fraction of the
cost (Section V-A). Then, we show how the learned posterior
can be leveraged for faster information-gathering (Section V-
B). Finally, we evaluate the model as part of an uncertainty-
aware planner for a grasping task (Sections V-C and V-D)
and deploy the model on a real Franka Panda robot.

A. Particle Filter Baseline

To understand the trade-off between efficiency and pre-
diction performance of GNPs, we compare our approach
to a particle filter. We reuse our decoder architecture and
train it to predict grasp stability using the known dynamic
parameters with a standard cross-entropy loss. This model is
then used during the fitting phase as the observation model
of a standard particle filter found in Chopin et al. [8]. The
filter is initialized with a varying number of particles (N =
10, 100, 1000, 10000) sampled from a uniform distribution
over the range of valid dynamic parameters.

Figure 4 shows the performance of our method compared
to the particle filter using a large number of particles (N =
10, 000). We report average precision3 of the grasp stability
classifier evaluated over time as the model collects more
adaptation grasps. We find that GNPs perform comparably
to the particle filter at a fraction of the online inference cost

3Average precision characterizes how well we classify positive grasps
(balancing precision and recall), which is indicative of how the classifier
would perform in downstream tasks discussed later in this section.
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Fig. 6: Information Gain GNP encoders can be exploited for
faster information-gathering. Average Precision per grasp for IG
and random adaptation strategies. Solid lines are medians, and error
ranges are the upper and lower quartiles across 500 test objects.

used by the baseline as shown in Figure 5. Our amortized
prediction is a constant-pass time through the encoder which
is significantly faster than the best-performing filters with
large numbers of particles.

B. Using Heuristics for Efficient Information Gathering

We evaluate if the amortized posteriors can be used to
gather data more efficiently using an information-gain (IG)
acquisition function (Section III-B). A useful uncertainty
representation should permit the model to reason about what
inputs are more informative than others.

Given a trained GNP, we simulate the adaptation phase
under the random and IG strategies. At each timestep, 25
unlabeled grasps from the novel object are sampled. The ran-
dom data-collection strategy chooses a single grasp from this
pool. The information-gain strategy computes the expected
information-gain metric for each grasp, and greedily chooses
the grasp with maximal IG. To evaluate performance, we
again report the average precision of the grasp classifier. Our
results are shown in Figure 6.

On the Boxes dataset, our results show that a greedy IG
heuristic produces better performing classifiers with less ac-
quisition data. This suggest that amortized posteriors are still
useful for probabilistic reasoning. On the ShapeNet dataset,
the IG heuristic has a smaller performance improvement
over random. We attribute this to the significant influence
of object geometry on grasp stability. Some objects have
irregular geometry that is difficult to learn. For other objects,
grasp stability is governed primarily by their geometry (e.g.
an hourglass that is only graspable at the center), rather than
their underlying dynamic parameters. Since all boxes have
similar geometry, the stability of a grasp is far more sensitive
to the dynamic parameters than those of ShapeNet.

C. Finding Stable Grasps for Novel Objects

To evaluate the utility of GNPs for practical grasping tasks,
we integrate the model into the grasp planner discussed in
Section III-C. In simulation, we first generate a novel object
and perform the adaptation phase using both IG and random
strategies. After each observation, we use a sampling based
approximation of Eq. 3 to select the most likely grasp.

In Figure 7, we report how many adaptation grasps are
required to reach a desired grasp success rate (how often the
chosen grasp is actually successful) on ShapeNet and Boxes

datasets (with 500 novel objects per dataset). We consider
two task difficulty levels: where the chosen grasp must be
either < 20N (easy) or < 10N (hard). Using less force
requires better understanding of dynamic properties.

Across both datasets and adaptation strategies, GNPs are
able to successfully adapt to novel objects: performance
increases with the number of adaptation grasps (requiring
as little as 5 grasps to achieve high success rates). The IG
strategy shows small improvements for easy grasps (< 20N
force; smaller bars are better). For hard grasps (< 10N
force), IG shows a larger gain, sometimes needing as few as
half the required adaptation grasps for similar performance
to random (e.g., to achieve 85% grasp success rate).

D. Uncertainty-Aware Planning

Another task that requires understanding dynamic prop-
erties is that of grasping an object with minimal force.
Succeeding at this task requires grasping as close to the
center of mass as possible to avoid slip. We formalize this
task using the reward function:

R(G) =

{
Fmax − FG, grasp is stable,
Rfailure, otherwise.

The robot can choose forces in the range (5, 20)N and
smaller forces lead to larger reward. FG is the force of
the chosen grasp and we choose a large negative reward
(Rfailure = −Fmax) to prefer robust behaviour where the
robot uses larger forces in the face of uncertainty (as opposed
to dropping the object).

We perform this task using an uncertainty aware plan-
ner (Eq. 4), with sampling-based optimization (using 200
samples). We evaluate task performance with 500 objects
after each adaptation grasp. In Figure 8, we report how often
the chosen grasp was successful and the normalized regret
achieved for successful grasps.

We compare our approach that uses the uncertainty from
the amortized posterior distributions (Monte Carlo) to an
ablation that only uses the mean of the posterior distribution
when planning (Most Likely). This ablation evaluates the
utility of learned posteriors for robust grasp planning un-
der uncertainty. Monte Carlo achieves higher success rates,
showing robust behaviour even with few adaptation grasps.
This comes at a cost of higher initial regrets but task per-
formance improves as the model collects more information,
which is the desired robust behaviour.

E. Panda Grasping Demo

We deploy the trained model on a Franka Emika Panda
robot. The training phase is performed solely in simulation
but we perform the adaptation and testing phases on the real
robot (Figure 9) using a heavy block with an offset center
of mass (i.e., only grasps on one side of the object will
succeed). In the real world, we only sample grasps of 5N
that are kinematically feasible and grasps are labeled based
on whether they slip in the gripper after lifting the arm.

We compare to an antipodal grasp sampler that chooses
grasps based solely on object geometry. For our method, we
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Fig. 7: GNP Performance as a Grasp Detector Number of adaptation grasps needed to reach a desired Grasp Success Rate. The GNP
chooses the most likely grasp considering the current uncertainty arising from limited data. We consider easy and hard versions of the
task that use different force limits. The IG adaptation strategy tends to produce higher success rates with fewer adaptation grasps.

Fig. 8: Planning Success and Normalized Regret for the minimum
force grasping task. We ablate our GNP model to show the impact
of the explicit uncertainty representation. Solid lines are means and
shaded regions are a standard deviation.

allow the robot 10 adaptation grasps chosen using the IG
strategy. The baseline achieves 8/20 successful grasps while
our adapted model has 18/20 successes, highlighting the
ability to successfully adapt to non-visual properties. Please
see the accompanying video for more robot results.

VI. RELATED WORK

Several previous works have introduced Bayesian models
for rapid adaptation. For example, [9] and [10] both use latent
variables to parameterize a task and Gaussian Processes as
the global dynamics. [11] has a similarly structured model
but use a BNN as the dynamics model. [12] and [13] use
both deep ensembles and low-dimensional latent variables
within their models. For grasping, [14] developed adaptive
grasp classifiers using a similar approach to ours. However,
we extend this approach by considering probabilistic latent
spaces and showing that this learned latent space can be used
for robust planning and efficient adaptation.

Other work has focused on learning object dynamics with
unobservable object properties. In some works, the authors
assume the global dynamics are known a priori which can in-
form the values of object-specific properties [15], [16], [17],

Fig. 9: Robot Demo We test our method on a Panda robot by
grasping a block with an offset CoM (left). After 10 adaptation
grasps, the robot consistently grasps the object near the CoM (green
dot). The right 4 grasps show 4 successful evaluation grasps.

[18]. In our work, we desire to jointly infer the dynamics
and object properties. Related work which does not assume
the dynamics are known often rely on either a fixed dataset
[19], [20], [21], [22] at adaption time or a task definition
in order to infer the latent properties [23], [9], [24], [10].
Instead, we propose to use information-gain heuristics with
respect to model uncertainty which is applicable even when
the task is not yet known. Our approach can yield zero-shot
performance on a new task, because all the experimentation
was performed in a task-agnostic adaptation phase.

Disentangling object properties through interaction,
termed interactive and active perception, [25] is a common
strategy. Applications include understanding object kinemat-
ics [26], [27], or object geometry [28], [29]. Bandit-style ap-
proaches to grasp selection require a large number of grasps
to be effective [30], [31]. Unlike our approach, very few
methods except for [27], [29] address model uncertainty over
dynamic or geometric information, and only [29] leverages
uncertainty for efficient information-gathering.

VII. CONCLUSIONS

We present GNPs: an action feasibility model with an
explicit representation of uncertainty over a novel object’s
dynamic parameters. We experimentally verify that the amor-
tized predicted distributions are more computationally effi-
cient than particle filters and lead to robust grasp planners. In
the future, we are interested in training dynamic models for
multiple actions that share the same latent parameter space
to enable more robust long-horizon manipulation planning.

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 395 submitted to 2024 IEEE International Conference on
Robotics and Automation (ICRA). Received September 15, 2023.



REFERENCES

[1] M. Noseworthy, C. Moses, I. Brand, S. Castro, L. Kaelbling,
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